
Makalah IF2211 Strategi Algoritma, Semester II Tahun 2020/2021

Journey Planning: The Greedy Algorithm
Case Study: Yogyakarta

Karina Imani / 13519166

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

E-mail: 13519166@std.stei.itb.ac.id

Abstract—Journey planning is often a vital part in ensuring a

trip well executed. There are many aspects worth considering in

choosing each destination in a road trip to ensure efficiency and

good use of resources, such as travel distance, travel order, as

well as the cost and time needed, which are more often than not

closely related with each other. Several algorithm strategies,

combined with the needed heuristic considerations, may be the

perfect solution in arranging an efficient trip. This paper

explores the aforementioned possibilities as well as create an

implementation and case study for a round trip in Yogyakarta,

Indonesia.

Keywords—journey planning, algorithm strategies, heuristic

considerations.

I. INTRODUCTION

Journeys are perhaps one of the more common occurrences
in one’s daily life, be it for business arrangements, leisurely
travels, or other reasons. And most certainly, they do not come
without expending resources such as time, money, and the
traveler’s own stamina during the process, which is why they
are oftentimes budgeted to fit within the traveler’s
capabilities—that is to say, careful planning will be needed to
ensure the best possible experience within the aforementioned
limitations.

Figure 1. An example of travel budgeting.
(Source: vertex42.com)

This is where journey planning comes into action. In
journey planning, several considerations are taken into account,
and these are divided into two broad categories.

 The first one is the set of all resources available, as well as
how much the planner would be willing to expend. This
includes all the resources listed in the previous paragraph: time,
money, and stamina. The second one is the set of all aspects of
a trip that may be compacted in a more efficient way in order to
have ‘more for your money’. This will be the main focus of the
paper as well as our ultimate goal in journey planning, to
minimize the resources expended in a journey, or to compact as
many destinations or activities possible within a budget.

Figure 2. An example of travel itinerary.
(Source: producerroasterforum.com)

Over the years, many algorithm strategies have been
developed in order to make journey planning more efficient—
to name a few: the greedy algorithm, breadth and depth first
search, A* algorithm, and dynamic programming. These
algorithms don’t always optimize the same resources or aspects
in journey planning. For example, the greedy algorithm may be
used to maximize the number of stops in a round trip, or to
minimize the cost or time needed while picking the best
destinations. Meanwhile, the A* algorithm may be used in
picking the shortest route that passes through all the planned
destinations.

This paper proposes a strategy for the automation of
journey planning, namely using the greedy algorithm to choose
between a number of destinations, whilst taking into account
the general budget available.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2020/2021

II. THEORY

A. Journey Planning

Journey planning is an activity for optimizing the means of
travelling between two or more locations. Its process may
make use of an automated search engine (called a journey
planner) in order to optimize certain criteria, for example, the
least amount of time, distance, or cost, or the maximum
amount of stops. Journey planning may be differentiated from
route planning, in that a single journey may use different
modes of transportation, public or private, as opposed to the
continuous and consistent use of a single mode of
transportation in the latter term. [1]

A journey planner utilizes different algorithm strategies,
converted into a structured, modular program and completed
with a graphical user interface. It accepts inputs such as
transport modes (to include and/or exclude), trip optimization
preferences (i.e., shortest travel distance or fastest travel time),
trip cost optimization preferences (i.e., cheapest or best quality
destinations), among many others. [2]

Figure 3. Screenshot of SORTA’s Open Trip Planner.
(Source: github.com/opentripplanner)

B. The Greedy Algorithm

The greedy algorithm is an algorithm which makes the
locally optimal choice at each stage. In many cases, this type of
strategy does not produce an optimal solution, but may yield
locally optimal solutions that approximate a globally optimal
solution within a reasonable amount of time. [3]

Greedy algorithms may be broken down into five basic
components, such as:

1. A candidate set, which is the set of choices that may be
chosen on each step.

2. A solution set, which is the set of candidates chosen as
the local optimum.

3. A selection function, which chooses the best among
those in the candidate set.

4. A feasibility function, which determines if a candidate
may be chosen as a solution.

5. An objective function, which determines the
optimization method.

6. A solution function, which indicates if the candidate
set is a solution. [4]

 Furthermore, the common schema for a greedy algorithm is
detailed below:

S = {}

while not solution(S) or not C = {} do

 x <- selection(C)

 C <- C – {x}

 if feasible(x) then

 S <- S + {x}

if solution(s) then

 return S

else

 return {}

 As previously stated, since the principle of the greedy
algorithm is to find the local optimum in each step, the solution
provided by this algorithm may not always be the global
optimum, but it would provide a good approximation in a
reasonable amount of time.

C. Yogyakarta

Yogyakarta is the capital city of the Special Region of
Yogyakarta in Indonesia, specifically, the island of Java. It is
regarded as an important center for traditional Javanese fine
arts (some examples include batik textiles, wayang puppetry,
and such) as well as education, both basic and higher—it is
home to a large student population and houses one of the
largest and most prestigious universities, namely, Universitas
Gadjah Mada, earning it the nickname “the city of students”.

In addition to arts and education, Yogyakarta is rich in its
history as well, previously occupied by a few of the strongest
and most long-lasting monarchies among the whole
archipelago of Indonesia, including Mataram Kingdom,
Majapahit Empire, and Mataram Sultanate. It has also seen a
fair share of historical events, before, during, and after the
colonialism and imperialism by the Netherlands and Japan, and
had even once become the capital of the Republic of Indonesia
(1946–1948).

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2020/2021

Figure 4. Keraton Yogyakarta.
(Source: Wikipedia)

Due to its rich present and colorful past, Yogyakarta hosts a
number of tourist attractions, cuisine and activities alike, which
makes it a perfect candidate for the case study of a journey
planning. It is also chosen due to its deep roots in tradition,
reflecting a portion, although not representative, of Indonesian
culture.

III. APPLICATION

A. Proposition

A greedy algorithm may be used to approximate optimizing
resources based on a certain criteria, i.e., the efficient use of
time or financial resources. While it does not always produce
the optimum solution in most cases, it suits the problem at hand
in the sense that it may not completely use up all the resources
owned—in journey planning, extra resources are always
welcome in case of emergency and/or additional needs.

The idea of the program is simple. The user lists a number
of destinations, as well as the cost (in IDR) and time (in hours)
they are willing to spend in each destination. This information
can be provided from looking through various travel guides,
reflecting the combined fees of entrance, facilities, and
amenities of a destination, or the time needed to do all
activities within a destination.

Figure 5. A query for estimate prices.
(Source: travelspromo.com)

For better time considerations, the planner should also
include a matrix, its width and height the number of
destinations, which represents the time taken to go between
two destinations, the x and y (or i and j) indexes. Again, this
information can be provided from looking through map
applications, querying both places in the search boxes, and
taking note of the travel time between the two. It should be
noted that, due to one- and two-way traffic, the time taken to
get from location A to B isn’t always equivalent with B to A.

Figure 6. A query for estimate prices.
(Source: Google Maps)

 Once we have both types of data at the ready, we can
immediately implement our greedy algorithm.

 Essentially, the idea behind our greedy algorithm is to
minimize the time taken to travel between locations. The
reason for this consideration is, even though we could just as
easily create a greedy algorithm to minimize the cost of a trip,
or maximize the time spent on a trip, perhaps the most efficient
way of planning a trip is to stay on the road less—this means
less transportation cost and less travel time, a win on both ends.

 As such, we shall compare the time needed to travel
between destinations and choose the smallest number among
them. Of course, the total cost and time of our journey’s
budget, as mentioned before, would still be taken into account.
In addition to that, should there be two destinations with the
same travel time from our ‘current location’, we would choose
the one with less cost, or the one with more time.

B. Implementation

For ease of implementation, our program would be
completely written in the Python programming language. Due
to the program’s moderate simplicity, and Python’s relative
efficiency, there are no libraries that must be included—the
input only makes use of the typical array, matrix, and string
parser, and the main body only makes use of iterations and if-
else branches.

The program reads a text file containing the needed data,
mentioned in the previous section, as well as a few additional
attributes to make processing easier:

1. The first line should state the number of destinations
listed in the file, n.

2. The next n lines should state the data of each
destination, i.e., the cost, time, and distance from our
initial location (in this case, accommodations). Each
data should be separated by a vertical bar sandwiched
between two spaces (“ | ”).

3. The last n lines should state a set of numbers, each line
holding n numbers, each representing the time taken to
travel between two places. When seen as a whole, they
should form an n x n matrix whose indexes are

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2020/2021

representative of the order in which the data of each
destination is mentioned in the file.

 The text file should roughly look like this:

3

Destination 1 } 1000 | 10 | 10

Destination 2 } 2000 | 20 | 20

Destination 3 } 3000 | 30 | 30

0 1 2

3 0 4

5 6 0

In this case, visiting “destination 1” would cost you IDR
1,000 and take you 10 minutes. Furthermore, the time it would
take to travel between “destination 1” and your accommodation
would be 10 minutes.

As for the matrix, the number 0 at the top left corner
indicates that it would take 0 minute to travel from “destination
1” to “destination 1”, since they are essentially the same
location. The number 1 right next to it indicates that it would
take 1 minute to travel from “destination 1” to “destination 2”.

 Once the input files have been decided, we can decide how
to process the data and implement our greedy algorithm. Once
completed, the program we are working on should be able to
do as follows:

Input the text file name: <user input>

Obtained data:

['Destination 1', 50000, 180, 13]

['Destination 2', 80000, 240, 17]

['Destination 3', 15000, 90, 25]

Budget available (in IDR): <user input>

Time available (in minutes): <user input>

Your destinations:

 - <list item>

 - <list item>

Total cost: <combined cost>

Total time: <combined time>

As shown in the box above, our program should be able to
take a file name as its first input, open the file, and show its
contents. This will be done with the use of functions input(),
open(), and readline()—none of which needs a library to work.
The input will then be parsed into an array with the function
str.split(<divider>), after having its trailing new line

(“\n”) removed with the function str.rstrip(“\n”).

Afterwards, it would take the cost and time the user is
willing to spend on the trip as a whole, and use it to generate an
array of destinations with the minimum travel time, all within
the constraints of the cost and time mentioned before.

 The code for the main program is pasted below, annotated
with comments detailing each step:

file = input("Input the text file name: ")

f = open(file)

Read the number of entries

n = f.readline()

Initialize empty arrays

c1 = {}

c2 = {}

t1 = {}

t2 = {}

Read entries

for i in range (int(n)):

 c1[i] = f.readline().rstrip("\n")

 c2[i] = c1[i].split(' | ')

 # Change numeric entries to int

 c2[i][1] = int(c2[i][1])

 c2[i][2] = int(c2[i][2])

 c2[i][3] = int(c2[i][3])

Read matrix

for i in range (int(n)):

 t1[i] = f.readline().rstrip("\n")

 t2[i] = t1[i].split(' ')

 # Change numeric entries to int

 for j in range (int(n)):

 t2[i][j] = int(t2[i][j])

Print entries

print("\nObtained data: ")

for i in range (int(n)):

 print(c2[i])

Get budget

cost = input("\nBudget available (in IDR): ")

time = input("Time available (in minutes): ")

Greedy algorithm

greedy(int(n), c2, t2, int(cost), int(time))

 The greedy algorithm on the last line is in charge of
producing the array of destinations that make up the solution,
as well as printing the results in the predetermined manner. In
implementing our greedy algorithm, let us first define each of
its components, as listed in chapter II:

1. Candidate set: the set of destinations—in this case, a
set of numbers corresponding to the indexes of each
destination within the entry array.

2. Solution set: the set of destinations which minimizes
the time taken to travel between the destinations,
within the set cost and time.

3. Selection function: a simple iteration to find the
smallest number among the travel time from the

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2020/2021

‘current location’, aka the last location in the solution
set at the time.

4. Feasibility function: an if-else branch that checks
whether a destinations cost and time has already
exceeded the owned resources.

5. Objective function: minimizes travel time between
destinations while taking into account the cost and time
allocated by the user.

6. Solution function: the function stops when no more
destinations can be added, or if the number of
destinations is the same as the number of destinations
in the solution set.

 With components as such, we implement the greedy
algorithm as follows. The following three figures make up the
whole of our greedy function—even though they take care of
different steps within the function, they are not to be treated as
separate segments of code.

Figure 7. The greedy function, part 1.
(Source: Author implementation)

 The first part of the code initializes the the solution set as
an empty array, as well as keep the original values of cost and
time in variables ucost and utime (read unchanged cost and
time). Afterwards, the function also initializes an matrix of
zeroes with a width and height the number of entries (n x n).
This matrix, called the iteration matrix, sets the visited
destinations as 1, and the unvisited ones as 0.

 Below that, we have a segment of the code to try and fine
the first destination—the one closest to our accommodation,
aka the one with the smallest number of travel time from our
accommodation.

Figure 8. The greedy function, part 2.
(Source: Author implementation)

 The second part of the function deals with more iteration. It
is started with a while branch that checks if there are no more
destinations that can be added, or if the number of destinations
is already the same as the number of destinations in the
solution set. If there are still destinations left to be added, we
find the next destination—the one with the least travel time
from our current location.

 The mechanics of this portion is similar to the previous one,
with multiple if-else branches, except this one deals with the
travel time matrix instead of the destination data entries.

Figure 9. The greedy function, part 2.
(Source: Author implementation)

 The final part of the function is a simple print segment to
print out the proposed list of destinations as well as the total
cost and time expended to travel through them.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2020/2021

C. Case Study

As examples for this method will be using a case study of

travelling in Yogyakarta, it would be efficient to first decide

which destinations should be considered in journey planning.

Based on several travel guides and personal experiences, they

are listed as such:

1. Prambanan Temple

2. Limestone Cliffs

3. Tugu Yogyakarta

4. Pengger Pine Forest

5. Yogya Kembali Monument

6. Taman Sari

7. Gerabah Kasongan Tourism Village

Of course, we must also pick a means of accommodation

as a starting point. In this case, we chose the University Hotel.

This means, on every trip planned, we must

In the course of implementation, further information would

be procured for each of the destinations listed above, as

considerations in planning the optimized cost. From querying

and taking notes of the required data for both the destination

entries and travel time matrix, we produce a file we will call

“test.txt”.

Figure 10. The contents of test.txt.

(Source: Author implementation)

 The following are several tests for the program in the
previous section, using the same input text file, but with
different cost and time limits.

Figure 11. Test 1, with cost 200,000 and time 600.

(Source: Author implementation)

Figure 12. Test 2, with cost 350,000 and time 900.

(Source: Author implementation)

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2020/2021

Figure 13. Test 3, with cost 300,000 and time 1200.

(Source: Author implementation)

 As can be proven through manual computation, the results
of the tests are consistent with how the program is structured
and implemented, meaning there are no errors with the
program. For the efficiency of the program itself, as with most
greedy strategies for optimization problems, surely there may
be cases where an optimum solution is not produced, but in
each case, a good approximation is given within a reasonable
amount of time.

Figure 14. Example map of the route produced with greedy
algorithm. (Source: Google Maps)

IV. CONCLUSION

The greedy algorithm may be used to approximate the
solution to optimization problems adequately within a
reasonable amount of time. One of these problems is journey
planning—in this implementation, by minimizing the travel
time between destinations while taking into account the general
cost and time limitations of the trip.

To further improve the program, the author proposes web
scraping to gather data from the internet, such as the time and
cost expended in each destination, and the travel times between
destinations obtained from map applications. The author hopes
that the creation of this program may help with journey
planning, as well as be developed into something more
efficient and easier to use.

VIDEO LINK AT YOUTUBE

To complement this paper, a Youtube video with a verbal
explanation and program demonstration has been made and
posted with the following link:

https://youtu.be/YqyVTAK3bNk

ACKNOWLEDGMENT

First and foremost, I would like to thank God for his
blessing and guidance, for this essay would not have been
completed without his grace. I would also like to express my
gratitude towards my IF2211 Algorithm Strategies lecturer,
Mr. Rinaldi Munir for the opportunity to put the knowledge I
have gained through his classes into words of an essay. Lastly,
I would like to thank my sister and friends for the suggestions
and examples regarding the topic of this essay.

REFERENCES

[1] Li, Jing-Quan; Zhou, Kun; Zhang, Liping; Zhang, Wei-Bin, "A
Multimodal Trip Planning System With Real-Time Traffic and Transit
Information" in Journal of Intelligent Transportation Systems, p. 60–66.
2012.

[2] OpenTripPlanner.org, “OpenTripPlanner” in GitHub. Retrieved 10 May
2021.

[3] Black, Paul E., "greedy algorithm" in Dictionary of Algorithms and Data
Structures. U.S. National Institute of Standards and Technology (NIST).
Retrieved 10 May 2021.

[4] Munir, Rinaldi, “Algoritma Greedy (Bagian I)” in Bahan Kuliah IF2211
Strategi Algoritma. Retrieved 10 May 2021.

[5] Munir, Rinaldi, “Dynamic Programming (Bagian I)” in Bahan Kuliah
IF2211 Strategi Algoritma. Retrieved 10 May 2021.

[6] Cormen, T. H.; Leiserson, C. E.; Rivest, R. L.; Stein, C., Introduction to
Algorithms (2nd ed.), MIT Press & McGraw–Hill. 2001.

STATEMENT

With this, I hereby state that this paper is purely in my own

writing, and neither an adaptation nor a translation of someone

else’s, as well as a plagiarism.

Jakarta, 11 Mei 2021

Karina Imani / 13519166

https://youtu.be/YqyVTAK3bNk

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2020/2021

